Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Java for Data Science
  • Table Of Contents Toc
  • Feedback & Rating feedback
Java for Data Science

Java for Data Science

By : Richard M. Reese , Reese
close
close
Java for Data Science

Java for Data Science

By: Richard M. Reese , Reese

Overview of this book

para 1: Get the lowdown on Java and explore big data analytics with Java for Data Science. Packed with examples and data science principles, this book uncovers the techniques & Java tools supporting data science and machine learning. Para 2: The stability and power of Java combines with key data science concepts for effective exploration of data. By working with Java APIs and techniques, this data science book allows you to build applications and use analysis techniques centred on machine learning. Para 3: Java for Data Science gives you the understanding you need to examine the techniques and Java tools supporting big data analytics. These Java-based approaches allow you to tackle data mining and statistical analysis in detail. Deep learning and Java data mining are also featured, so you can explore and analyse data effectively, and build intelligent applications using machine learning. para 4: What?s Inside ? Understand data science principles with Java support ? Discover machine learning and deep learning essentials ? Explore data science problems with Java-based solutions
Table of Contents (19 chapters)
close
close
Java for Data Science
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface

Chapter 5. Statistical Data Analysis Techniques

The intent of this chapter is not to make the reader an expert in statistical techniques. Rather, it is to familiarize the reader with the basic statistical techniques in use and demonstrate how Java can support statistical analysis. While there are quite a variety of data analysis techniques, in this chapter, we will focus on the more common tasks.

These techniques range from the relatively simple mean calculation to sophisticated regression analysis models. Statistical analysis can be a very complicated process and requires significant study to be conducted properly. We will start with an introduction to basic statistical analysis techniques, including calculating the mean, median, mode, and standard deviation of a dataset. There are numerous approaches used to calculate these values, which we will demonstrate using standard Java and third-party APIs. We will also briefly discuss sample size and hypothesis testing.

Regression analysis is an...

Limited Time Offer

$10p/m for 3 months

Get online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech and supported with AI assistants
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon

Create a Note

Modal Close icon
You need to login to use this feature.

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note