Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Data Analysis, Second Edition
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

By : Ivan Idris
4 (4)
close
close
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

4 (4)
By: Ivan Idris

Overview of this book

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.
Table of Contents (22 chapters)
close
close
Python Data Analysis - Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Key Concepts
Online Resources

Basic descriptive statistics with NumPy


In this book, we will try to use as many varied datasets as possible. This depends on the availability of the data. Unfortunately, this means that the subject of the data might not exactly match your interests. Every dataset has its own quirks, but the general skills you acquire in this book should transfer to your own field. In this chapter, we will load datasets from the statsmodels library into NumPy arrays in order to analyze the data.

Mauna Loa CO2 measurements is the first dataset we shall use from the statsmodels datasets package. The following code loads the dataset and prints basics descriptive statistical values:

import numpy as np
from scipy.stats import scoreatpercentile
import pandas as pd

data = pd.read_csv("co2.csv", index_col=0, parse_dates=True) 
co2 = np.array(data.co2) 
 
print("The statistical values for amounts of co2 in atmosphere: \n") 
print("Max method", co2.max()) 
print("Max function...

Limited Time Offer

$10p/m for 3 months

Get online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech and supported with AI assistants
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon

Create a Note

Modal Close icon
You need to login to use this feature.

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note