Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Reinforcement Learning Algorithms with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Reinforcement Learning Algorithms with Python

Reinforcement Learning Algorithms with Python

By : Lonza
3 (3)
close
close
Reinforcement Learning Algorithms with Python

Reinforcement Learning Algorithms with Python

3 (3)
By: Lonza

Overview of this book

Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents. Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.
Table of Contents (19 chapters)
close
close
Free Chapter
1
Section 1: Algorithms and Environments
5
Section 2: Model-Free RL Algorithms
11
Section 3: Beyond Model-Free Algorithms and Improvements
17
Assessments

Imitation Learning with the DAgger Algorithm

The ability of an algorithm to learn only from rewards is a very important characteristic that led us to develop reinforcement learning algorithms. This enables an agent to learn and improve its policy from scratch without additional supervision. Despite this, there are situations where other expert agents are already employed in a given environment. Imitation learning (IL) algorithms leverage the expert by imitating their actions and learning the policy from them.

This chapter focuses on imitation learning. Although different to reinforcement learning, imitation learning offers great opportunities and capabilities, especially in environments with very large state spaces and sparse rewards. Obviously, imitation learning is possible only when a more expert agent to imitate is available.

The chapter will focus on the main concepts and...

Limited Time Offer

$10p/m for 3 months

Get online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech and supported with AI assistants
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon

Create a Note

Modal Close icon
You need to login to use this feature.

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note