Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Java for Data Science
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Java for Data Science

Mastering Java for Data Science

By : Alexey Grigorev
5 (1)
close
close
Mastering Java for Data Science

Mastering Java for Data Science

5 (1)
By: Alexey Grigorev

Overview of this book

Java is the most popular programming language, according to the TIOBE index, and it is a typical choice for running production systems in many companies, both in the startup world and among large enterprises. Not surprisingly, it is also a common choice for creating data science applications: it is fast and has a great set of data processing tools, both built-in and external. What is more, choosing Java for data science allows you to easily integrate solutions with existing software, and bring data science into production with less effort. This book will teach you how to create data science applications with Java. First, we will revise the most important things when starting a data science application, and then brush up the basics of Java and machine learning before diving into more advanced topics. We start by going over the existing libraries for data processing and libraries with machine learning algorithms. After that, we cover topics such as classification and regression, dimensionality reduction and clustering, information retrieval and natural language processing, and deep learning and big data. Finally, we finish the book by talking about the ways to deploy the model and evaluate it in production settings.
Table of Contents (17 chapters)
close
close
Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface

Regression


In machine learning, regression problems deal with situations when the label information is continuous. This can be predicting the temperature for tomorrow, the stock price, the salary of a person or the rating of an item on an e-commerce website.

There are many models which can solve the regression problem:

  • Ordinary Least Squares (OLS) is the usual linear regression
  • Ridge regression and LASSO are the regularized variants of OLS
  • Tree-based models such as RandomForest
  • Neural networks

Approaching a regression problem is very similar to approaching a classification problem, and the general framework stays the same:

  • First, you select an evaluation metric
  • Then, you split the data into training and testing
  • You train the model on training, tune parameters using cross-validation, and do the final verification using the held out testing set.

Machine learning libraries for regression

We have already discussed many machine learning libraries that can deal with classification problems. Typically, these...

Limited Time Offer

$10p/m for 3 months

Get online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech and supported with AI assistants
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon

Create a Note

Modal Close icon
You need to login to use this feature.

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note