Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Java for Data Science
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Java for Data Science

Mastering Java for Data Science

By : Alexey Grigorev
5 (1)
close
close
Mastering Java for Data Science

Mastering Java for Data Science

5 (1)
By: Alexey Grigorev

Overview of this book

Java is the most popular programming language, according to the TIOBE index, and it is a typical choice for running production systems in many companies, both in the startup world and among large enterprises. Not surprisingly, it is also a common choice for creating data science applications: it is fast and has a great set of data processing tools, both built-in and external. What is more, choosing Java for data science allows you to easily integrate solutions with existing software, and bring data science into production with less effort. This book will teach you how to create data science applications with Java. First, we will revise the most important things when starting a data science application, and then brush up the basics of Java and machine learning before diving into more advanced topics. We start by going over the existing libraries for data processing and libraries with machine learning algorithms. After that, we cover topics such as classification and regression, dimensionality reduction and clustering, information retrieval and natural language processing, and deep learning and big data. Finally, we finish the book by talking about the ways to deploy the model and evaluate it in production settings.
Table of Contents (17 chapters)
close
close
Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface

Dimensionality reduction


Dimensionality reduction, as the name suggests, reduces the dimensionality of your dataset. That is, these techniques try to compress the dataset such that only the most useful information is retained, and the rest is discarded.

By dimensionality of a dataset, we mean the number of features of this dataset. When the dimensionality is high, that is, there are too many features, it can be bad due to the following reasons:

  • If there are more features than the items of the dataset, the problem becomes ill-defined and some linear models, such as ordinary least squares (OLS) regression cannot handle this case
  • Some features may be correlated and cause problems with training and interpreting the models
  • Some of the features can turn out to be noisy or irrelevant and confuse the model
  • Distances start to make less sense in high dimensions -- this problem is commonly referred to as the curse of dimensionality
  • Processing a large set of features may be computationally expensive

In the...

Limited Time Offer

$10p/m for 3 months

Get online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech and supported with AI assistants
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon

Create a Note

Modal Close icon
You need to login to use this feature.

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note