-
Book Overview & Buying
-
Table Of Contents
-
Feedback & Rating

Python Machine Learning By Example
By :

After a successful application of SVM with the linear kernel, we will look at one more example where SVM with the RBF kernel is suitable for it.
We are going to build a classifier that helps obstetricians categorize cardiotocograms (CTGs) into one of the three fetal states (normal, suspect, and pathologic). The cardiotocography dataset we use is from https://archive.ics.uci.edu/ml/datasets/Cardiotocography under the UCI Machine Learning Repository and it can be directly downloaded via https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls as an .xls
Excel file. The dataset consists of measurements of fetal heart rate and uterine contraction as features and fetal state class code (1=normal, 2=suspect, 3=pathologic) as label. There are, in total, 2126 samples with 23 features. Based on the numbers of instances and features (2126 is not far more than 23), the RBF kernel is the first choice.
We herein work...