Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Machine Learning By Example
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Machine Learning By Example

Python Machine Learning By Example

By : Yuxi (Hayden) Liu, Ivan Idris
4.3 (30)
close
close
Python Machine Learning By Example

Python Machine Learning By Example

4.3 (30)
By: Yuxi (Hayden) Liu, Ivan Idris

Overview of this book

Data science and machine learning are some of the top buzzwords in the technical world today. A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning. This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression and model performance evaluation. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms – they are no more obscure as they thought. Also, you will be guided step by step to build your own models from scratch. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques. Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python. Interesting and easy-to-follow examples, to name some, news topic classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal.
Table of Contents (15 chapters)
close
close
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Click-through prediction with decision tree


After several examples, it is now time to predict ad click-through with the decision tree algorithm we just thoroughly learned and practiced. We will use the dataset from a Kaggle machine learning competition Click-Through Rate Prediction (https://www.kaggle.com/c/avazu-ctr-prediction).

For now, we only take the first 100,000 samples from the train file (unzipped from the train.gz file from https://www.kaggle.com/c/avazu-ctr-prediction/data) for training the decision tree and the first 100,000 samples from the test file (unzipped from the test.gz file from the same page) for prediction purposes.

The data fields are described as follows:

  • id: ad identifier, such as 1000009418151094273, 10000169349117863715
  • click: 0 for non-click, 1 for click
  • hour: in the format of YYMMDDHH, for example, 14102100
  • C1: anonymized categorical variable, such as 1005, 1002
  • banner_pos: where a banner is located, 1 and 0
  • site_id: site identifier, such as 1fbe01fe, fe8cc448, d6137915...

Limited Time Offer

$10p/m for 3 months

Get online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech and supported with AI assistants
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon

Create a Note

Modal Close icon
You need to login to use this feature.

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note