Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Deep Learning
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Deep Learning

Python Deep Learning

By : Vasilev, Daniel Slater, Spacagna, Roelants, Zocca
4 (8)
close
close
Python Deep Learning

Python Deep Learning

4 (8)
By: Vasilev, Daniel Slater, Spacagna, Roelants, Zocca

Overview of this book

With the surge in artificial intelligence in applications catering to both business and consumer needs, deep learning is more important than ever for meeting current and future market demands. With this book, you’ll explore deep learning, and learn how to put machine learning to use in your projects. This second edition of Python Deep Learning will get you up to speed with deep learning, deep neural networks, and how to train them with high-performance algorithms and popular Python frameworks. You’ll uncover different neural network architectures, such as convolutional networks, recurrent neural networks, long short-term memory (LSTM) networks, and capsule networks. You’ll also learn how to solve problems in the fields of computer vision, natural language processing (NLP), and speech recognition. You'll study generative model approaches such as variational autoencoders and Generative Adversarial Networks (GANs) to generate images. As you delve into newly evolved areas of reinforcement learning, you’ll gain an understanding of state-of-the-art algorithms that are the main components behind popular games Go, Atari, and Dota. By the end of the book, you will be well-versed with the theory of deep learning along with its real-world applications.
Table of Contents (16 chapters)
close
close
Title Page
About Packt
Contributors
Preface
Index

Policy gradient methods


All RL algorithms we discussed until now have tried to learn the state- or action-value functions. For example, in Q-learning we usually follow an ε-greedy policy, which has no parameters (OK, it has one parameter) and relies on the value function instead. In this section, we'll discuss something new: how to approximate the policy itself with the help of policy gradient methods. We'll follow a similar approach as in Chapter 8Reinforcement Learning Theory, in the Value function approximation section.

There, we introduced a value approximation function, which is described by a set of parameters w (neural net weights). Here, we'll introduce a parameterized policy 

 , which is described by a set of parameters θ. As with value function approximation, θcould be the weights of a neural network.

Recall that we use the 

 notation to describe the probability, which a stochastic (and not deterministic) policy, π ,assigns to an action, a, given current state s. We'll denote the...

Limited Time Offer

$10p/m for 3 months

Get online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech and supported with AI assistants
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon

Create a Note

Modal Close icon
You need to login to use this feature.

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note